	M 3. 3 points	
	$\mathcal{E} = -\frac{d\phi}{dz}$	1 point
		1 point
	$\mathcal{E} = -B \frac{dA}{dc}$	•
	$\varepsilon = -B L v_0$ (+ or - acceptable)	1 point
(h)	5 points	
(0)	$F - Ii \times B$ or $F - IiB$	1 point
	$I - \left \frac{\mathcal{E}}{R} \right $	1 point
	For using & calculated in part (a)	1
		1 point
	$F - \left \frac{\ell}{R} \right \mathcal{L}B - \frac{B \mathcal{L} v_0}{R} \mathcal{L}B$	
	$F = \frac{v_0 B^2 L^2}{R} (+ \text{ or } - \text{acceptable})$	1 point
	For indicating that the force is opposite the direction of the velocity (including minus sign in above expression is sufficient)	1 point
(c)	5 points	
	For an expression of Newton's second law: F = ms	1 point
	Using expression for F from part (b), with a generic velocity:	
	$a = \frac{vB^2L^2}{mR}$ (+ or - acceptable)	1 point
	For indicating that the acceleration is opposite the direction of the velocity (including minus sign above or in differential equation below is sufficient)	1 point
	For a correct differential equation:	
	$\frac{dv}{dz} = -v \frac{B^2 L^2}{mR}$	1 point
	$\frac{dv}{v} = -\frac{B^2 L^2}{mR} dt$	
	$\ln v \bigg _{v_0}^v \frac{B^2 \ell^2}{mR} t$	•
	$\ln \frac{v}{v_0} = -\frac{B^2 \ell^2}{mR} \epsilon$. 2
	$v = v_0 e^{-B^2 L^2 t / mR}$	1 point
(d)	2 points From energy conservation, the resistor will eventually	
	dissipate all the kinetic energy of the rod $E_{\text{diss}} = \frac{1}{2}mv_0^2$	2 points